Multi-Agent Path Finding for Robots in Large-Scale
Warehouses

Abhay Chhagan Karade*, Vaibhav Nandkumar Kadam' and Akash Ashok Thorat!
Robotics Engineering,
Worcester Polytechnic Institute
Email: *akarade@wpi.edu, fvkadam@wpi.edu, faathorat@wpi.edu

Abstract—The Multi-Agent Pathfinding (MAPF) is a crucial
problem of warehouse mobile robots to find collision free path
to the target position. In this paper, we explore MAPF algorithms
that produce an optimal and suboptimal path for a fixed number
of robots to navigate in a warehouse environment. In addition,
this paper also elaborates on the comparative analysis of the
studied algorithms, with increasing environmental complexity
and increasing number of agents. The compared parameters are
the total cost, flowtime and makespan of each algorithm.

I. INTRODUCTION

Logistics operations in large scale warehouses require ef-
ficiency in operation for an increased throughput. Using
multiple robots for pickup & delivery of material from one
point to another increases the efficiency of logistic opera-
tions. Increase in the number of robots in warehouses does
bring challenges like increased congestion and problems of
collision-free path planning and task allocation. When multiple
robots are considered, finding a path that is collision-free
and optimal is necessary. We investigate the usage of Multi-
Agent Path finding (MAPF) techniques that aid to solve the
problems in large-scale warehouses. We propose to implement
and study various MAPF algorithms in order to solve the
above-mentioned problems. We carried out experiments in
simulation to test and validate results.

The project report is organized as follows: Next section dis-
cusses the related work in literature that provides the overview
of algorithms for MAPF. Section III deals with methodology
implemented for solving the problems of collision-free path
finding. Section IV will briefly highlight the challenges en-
countered in the project. Section V will show the results of
algorithmic implementations. Finally, Section VI will have the
concluding remarks for the project

II. RELATED WORK

Multi-agent Path Finding (MAPF) has been a largely studied
field that has applications to warehouse management, airport
towing, and shopping centers. etc. MAPF deals with tech-
niques to find collision-free paths for multiple robots. A. Bolu
et. al [1] discusses a collision-free path planning algorithm for
mobile robots on a warehouse grid. It introduces a modified
A* algorithm which considers turning costs of the robots. G.
Sharon et. al [2]] introduces to a two level algorithm called
Conflict Based Search (CBS) which does not convert the
problem in single agent models. The path search is carried

over conflict tree (CT) on conflicts based on individual agents.
Large warehouses do face the problem of traffic flow and task
allocation, Y Shi et. al 3] discusses a approach that handle
task allocation of multiple robots in large warehouses using
a decentralized auction bid scheme and the robot with lowest
bid wins to which the task is allocated. Each robot’s path is
planned using Floyd algorithm, moreover a collision avoidance
scheme is discussed to sufficiently avoid robot collisions.
Silver, D et. al [7] highlights three different approaches to,
extend the spatial A* into time domain. The algorithms pre-
sented are decoupled approaches that break down the problem
into a series of single-agent searches. Cooperative A* (CA*)
searches space-time for a non-colliding route. Hierarchical
Cooperative A* (HCA*) uses an abstract heuristic to boost
performance. Finally, Windowed Hierarchical Cooperative A*
(WHCA¥*) limits the space-time search depth to a dynamic
window, spreading computation over the duration of the route.
Varambally, S et. al [9] discuss shortcomings of the Action
Dependency Graph (ADG) framework which is provided to
consider simplifying assumptions such as - robot moves in dis-
crete time and minimal considerations about robot dynamics-
affect the performance of the robots. They argue that the
ADG framework provides the same robustness guarantees
as the single-agent framework. To improve it authors used
the Rolling-Horizon Collision-Resolution framework to solve
MAPF problems with a persistent stream of online tasks.
They also compared the standard MAPF model with many
of its more complex variants, such as MAPF with rotation,
k-robust MAPF, and continuous-time MAPF (taking robot
dynamics into account). They found that Using windowing
and considering rotation time during planning significantly
improves throughput in most cases.

III. METHODOLOGY

Our methodology is shaped by unifying terminology defined
by Stern R. et. al [4] for describing common MAPF assump-
tions and objectives. Basic assumptions in Classical MAPF are
time is discretized into time steps, every action takes exactly
one time step, and in every time step, each agent occupies
exactly a single vertex.

To be aligned with the current research we will incorporate
commonly used types of Conflicts in Classical MAPF which
are Refer Fig 1.a Edge conflict, Fig 1.b Vertex conflict, Fig 1.c
Following conflict, Fig 1.d Cycle conflict, Fig 1.e Swapping

A 5 — HOC .
®® Jo 0o I |
B > ©
(@) (b) ") (d) (e)

Fig. 1: Types of Conflicts

conflict. and Agents behavior at target in Classical MAPF is
either stay at target or disappear at target, Our application area
is in warehouse, where the stay at target behavior is more
appropriate.

Evaluation measure of MAPFs are two objective func-
tions, first is ‘Makespan’, it has been used extensively by
compilation-based MAPF algorithms, while the ‘sum of costs’
has been used by most search-based MAPF algorithms.

Stern R. et. al [4] Introduces a new grid-based benchmark

for MAPF, and demonstrates experimentally that it poses a
challenge to contemporary MAPF algorithms. Which could
be incorporated to test our algorithms.
Generally used different graphs for evaluating MAPF algo-
rithms are Open N x N grids, N x N grids with random
obstacles, Warehouse grids, we are planning on using N
x N grids with random obstacles which will replicate the
warehouse environment for prototyping. This could be created
with the use of 2D simulator and to implement this work in
3D Gazebo physics engine would be a useful tool.

In our MAPF implementation We will keep the number
of agents constant and test algorithms such as CBS, A* and
it variants to compare the performance, however by keeping
runtime constant we will evaluate the maximum no of agents
each of the MAPF algorithm could handle.

Here we further discuss about various alogrithm that are
studied and implemented briefly. as follows.

A. Space Time A*

A¥* is an optimal / sub-optimal search based algorithm ,but it
cannot be directly implemented for Multi-agents as it results
to be an extremely inefficient MAPF Solver. As A* search
ignores the presence of other agents, or perhaps treats them as
stationary obstacles. For optimal and cooperative MAPF there
is no way to represent the routes of agents on a stationary map
(space map). To overcome this problem, we extend the map to
include a third dimension: time. Hence forming a space-time
map. A* search can now be used on the space-time map. The
goal of the agent is to reach the destination at any time. A*
will find the route that achieves this goal with the lowest cost;
this is the quickest path to the destination. Please refer Fig. 2]
that illustrates planing using A* in space-time grid map (space
time A*).

B. Prioritised Planning

Prioritised Planning, is a simple and straightforward ap-
proach of decoupled planning. In this approach, priorities are
assigned to individual agents in a pool of multiple agents.
A path search algorithm, generally space-time A* is run for

P First unit
A Second unit
¥ First goal

Second goal

Permanent
obstacle
First unit's
reservation

Second unit’s
reservation

— Planned path

Fig. 2: Space-time grid map with 2 agents

each individual agent in the descending order of the agents
priority. This ensures that the newly planned path for the
current agent does not collide with the already planned paths
of the other agents. This can be categorized as a sub optimal
approach. Although being fast, unfortunately it can sometimes
be incomplete. This means, not all agents can find a path and
successfully maneuver to the goal position. This is a major
limitation of prioritized planning. Also, the cost of the solution
depends heavily on the priorities of the agents.

C. Conflict based Planning

CBS first plans shortest paths for all agents independently
(which can be done fast) using a search based algorithm,
generally A* search. These paths are not allowed to collide
with the environment, but are allowed to collide with the paths
of other agents. If all agents find a collision free path then the
algorithm simply executes their motion until the reach the goal
position. Otherwise, it chooses a collision between two agents
and considers two cases recursively: 1) Prohibit agent a from
being in cell x at time step t. 2) Prohibit agent b from being in
cell x at time step t. Based on the above constraints it replans
the path. The hope is that CBS finds a collision-free solution
before it has imposed all possible constraints. CBS is slower
than Priority Planning, but delivers a complete solution. This
means, every agent is able to find a path and successfully
maneuver to its goal position, if a valid path exists. CBS is
a two level search algorithm comprising of high level and
low level. High level of CBS searches the binary constraint
tree. Low level of CBS finds new shortest path for the agent
with the newly imposed constraints. Please refer Fig. [3] that
illustrates the flow chart which provides an overview of the
CBS algorithm.

IV. APPROACH

In the given course period we investigated and studied
various MAPF algorithms by surveying the literature. In order
to understand the performance of each algorithm we started
by prototyping fundamental algorithms like Spatial A* and
simulating them in a 2D warehouse environment. The ware-
house environment was created using python and matplotlib.
Four warehouse environments were created labeled as env3,
env4, env5 and env6 in order of increasing complexity and an
increasing number of obstacles.

We gradually developed the understanding to use more
sophisticated algorithms in a MAPF environment. Through

Choose Node N for

expansion

Solution is
collision free ?

Yes No

.

Choose one of the
collisions and resolve it

A
by splitting node N into
N is goal child nodes
High node.
Level <
CBS Y

Find new shortest path

for agent with newly ll:g\\yel
imposed constraints, CBS

using space-time A*

CBS returns
solution
~

Fig. 3: CBS Overview

this process, we learned the limitations of Spatial A* for a
MAPF environment in the initial stage of the project itself.
This also helped us to understand the necessity of exploring
other variants of A* such ah the Space-Time A* which
considers additional time dimension rather than just the 3D
configuration space in a Spatial A*. We found that Space-Time
A* works better in discrete time-steps. To work in continuous
time-steps A* could be substituted with SIPP which is an
advanced version of A* that allows for real-valued action
execution times.

Furthermore, we implement the CBS algorithm to plan for
multiple agents in the warehouse grid. We simulated this
algorithm in our custom warehouse environments and analyzed
its performance based on our evaluation metrics. Finally, the
same process was repeated for Prioritized planning.

TABLE I: Schedule

Week . Task Divison
Vaibhav [Abhay | Akash
1-2 Literature review
3-5 Simulation Env Setup [Prototyping MAPF algorithms
6-7 Prototyping MAPF algorithms [Simulation
8-9 Integration of algorithms with Sim Env
10-11 Testing and validation
12 Buffer Time
13- 14 Code & Report documentation

V. RESULTS

Here we consider three colors for multiple agents namely
Aqua, Blue, Yellow with agent as circle and square as respec-
tively goal position.

)
(d)
Fig. 4: Path Planning of Single agent with Space-Time Astar

We started with planning using Space-Time Astar for a
single agent with less obstacles. Please refer Fig. [] that
illustrates the output frames. We see that for path finding for
single agent is as same using the A* without consideration of
time steps.

In order to overcome the above mentioned problems of
collision on edge as well as vertex, we studied and imple-
mented Prioritised Planning as discussed in Section III. Here
it considers priority in a descending order for all agents and
plan a collision free path. Please refer Fig.(4) t = 4 it illustrates
the situation where blue-agent waits for the Aqua-agent to
pass such that the edge constraint is satisfied. Moreover the
in Fig (6) t= 6, yellow agent takes detour to avoid collision
with Aqua-agent. Similarly when yellow reaches near Blue-
agent at t = 9 it avoids going via Blue-agent and reaches
goal to avoid collision. Even though it avoids collision it is
inefficient thus categorized as sub-optimal. Further we study
Conflict Based Search as which is two level algorithm which
uses Space-time A* in the lower level and currently in progress
of implementation.

We have developed a simulation setup refer Fig. for
testing our MAPF algorithm implementations for warehouse
environment. The software setup is developed such that it
can input varied obstacles or docking pods. We have depicted
different configurations of gangways, throughways, alleys. We
illustrate with a example showing in Fig. [flhow CBS algorithm
plans path for 2 agents where cyan colored agent takes a
different path in order to avoid collision with blue agent.

In order to emulate the actual scenario of warehouse we
do simple 3D visualisation in RViz with implementation of
Conflict based search in ROS2 C++ Fig. |/| shows 2 agents
spawned in Grid environment. In Fig. [[3] we show the green
agent waits giving priority to the Red agent in prioritised
planning in warehouse environment with 7 agents.

Please check the output video of CBS solver [link] and
Prioritised solver [link] with 10 agents.

https://youtu.be/OODFrEofphE
https://youtu.be/AIUwsfAmq1g

| | [|
o. u i. .o i o.o ..
| | | | | |
(a) (b) (c)
[| [| [|
| | | [|
AL T TR
| || | || || |

Fig. 5: Independent planning using A* for respective agents.

l

Lo

—
—n
-~

Fig. 6: CBS MAPF solver

Fig. 7: CBS Algorithm implementation in 3D

e CBS
Prioritized Planning

Fig. 8: CBS and PP

VI. CHALLENGES

In this project we conducted experiments with multi-agent
robots to find their path in a simulated warehouse environ-
ment. While implementing Conflict Based Search in early
prototyping we faced issues inorder resolve conflicts for n
agents as increased. We were able to overcome those to
implement CBS successfully and perform our experiments.
Further we developed a gazebo world of Warehouse in order
simulate them by using Nav2 Stack for each agents where our
MAPF solver shall provide the required path for the robot to
follow in a warehouse map. We faced issues while integrating
Navigation stack for N agents so we had to visualise our
algorithms in rviz without physics engine. As we increased N
number of agents doing experiments in constrained resources
takes alot of time to successfully investigate performance
metrics so limit the agents to 10.

VII. DISCUSSION

In this section we investigate the performance of Multi-
agent Path Finding Algorithms. We started with implementa-
tion of the independent planning using building block algo-
rithm A*.

Our performance analysis is based on the three criteria, total
cost, flow-time and makespan on environments with increasing
complexity levels. In the attached plots we considered four
environments where env 3 is a simple environment with
straight paths between the warehouse shelf’s , then we added
static obstacles and made it more complex in subsequent
environments. In order to have a fair analysis we keep number
of agents as ten along with the same start and goal locations
for all the environments while performing experiments for the
various mapf algorithms. We did this performance analysis
for two MAPF algorithms, CBS and Prioritized Planning, The
next subsection will discuss about the individual criteria and
observations.

A. Total Cost

The Total cost is the total path length of all the agents.
In ideal situation the total cost would be the sum of optimal
path lengths of all the agents, however to avoid conflicts the
algorithms make agents to traverse farther distances, which
eventually increases the cost. In plot. [0] we can observe that
up-to env no 5 the performance of both algorithms were
comparable with CBS performing slightly better than PP.
However there is significant change in performance for env
6 which is relatively complex environment with multiple
bottlenecks, CBS found overall shortest path for agents and
solution from PP is sub-optimal.

460

Total Cost

440 1

420 °

T T T
envd envb enve

Environments

T
env3

Fig. 9: Total Cost Analysis

15000 4 L4

10000 +

5000 - *

Total Time in ms

0

T T T
env4d envs enve

Environments

T
env3

Fig. 10: Flow-time Analysis

B. Flow-time

Flow-time is the time required for the planning of all the
agents. Flow time is an important factor when planning time
is priority and the application could tolerate the sub-optimal
expenses. The CBS algorithms first plan the optimal path for
all the agents and then conflicts are resolved one by one so the
flow time is directly proportional to the number of conflicts
that occur. the flow time plot [I0] shows the performance for
env 5 and env 6 is better than env 3, it could be because it
encountered more conflicts for agents in env 3. In the case of
Prioritised Planning it plans path of agents as per assigned
priorities, so it considers the conflicts with higher priority
agent as a obstacle and plans the path around it, so planning
time is more dependent on exploring thought obstacles and
which is nearly same for all the environments.

C. Makespan

Makespan is the completion time of agent which has the
maximum execution time. In our case we are not considering
non-holonomic constriants, all agents are point robots and
travel with constant speed and instant acceleration. considering
these assumptions for our case the longest path length agent
amoung all would be Makespan. Makespan is more relevant
when considered all the dynamics of the robots, in that case
even if the path length is shorter but it includes multiple turns
and eventually the Makespan will increase. considering our
assumptions we can observe that CBS has better performance
in finding shorter path lengths for the agents.

VIII. CONCLUSION

Multi-Agent Path Finding for Robots in Large-Scale Ware-
houses is a NP hard problem statement however crucial for
the boost in the warehouse automation development. In this
project we implemented two MAPF algorithms -CBS and

604 @ ®

Makespan

wm
(=]
L

54 1 (]
T T
env4d envs
Environments

T
env3 enve

Fig. 11: Makespan Analysis

() (b)

0. 0.
(c) (d)

Fig. 12: Warehouse Simulation Setup with varied obstacles
and Start Goal Position.

Prioritised Planning- in vanilla form, and visualized using a 2D
warehouse environments. We did performance analysis using
three metrics Total cost, flow-time and Makespan. we observed
that the CBS finds a shorter path with less total cost however
lacks in flow-time metric. Prioritised Planning(PP) has a better
performance in flow-time however it generates sub-optimal
solution. The performance of PP depends on priorities assigned
to the agents, in certain cases where the goal locations are in
bottleneck the PP might not able to find solutions because a
high priority agent already occupied the bottleneck. overall the
choice of the algorithm depends on application area and the
space constrains. The extended goals of implementation in 3D
environment is implemented for a simple environment.

APPENDIX A
INDIVIDUAL CONTRIBUTIONS

A. Abhay Karade

o Literature review
e 2D Test Environment Development
o Algorithmic implementation:

— Spatial A*.

Hl
1

@

;

0 e

I —

I

r1i

=

Hi
il

T e

[}
(s}
o

I—

1
[

—
£

6

1

:

IEQ
°
0
[| I D I |
| W EE NN NNNE

H
L

I—

1

i
il

®Q

I—

1
z.

T
S

1

I—
“—.'

[

Hl
i

= o [E—
- :##_I
i
-y

—

r1i

A
—
~

Fig. 13: Green agent waits for High Priority Red agent.

— Prioritized Planning.

(2]

e Team Coordination and Project Management

B.

C.

Vaibhav Kadam

Literature review
Project Documentation
Algorithmic implementation:
— Space time A*.
- CBS.

(3]

[4]

(51
(6]

Simulation and 3D environment visualisation.

Akash Thorat
Literature review
Algorithmic implementation:
— Spatial A*.
— Space time A*.
- CBS.

REFERENCES

(71
(8]

[9]

Sharon, G., Stern, R., Felner, A., Sturtevant, N. (2012). Conflict-Based
Search for Optimal Multi-Agent Path Finding. Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence, 563-569. Toronto,
Ontario, Canada: AAAI Press.

Y. Shi, B. Hu and R. Huang, "Task Allocation and Path Planning of Many
Robots with Motion Uncertainty in a Warehouse Environment,” 2021
IEEE International Conference on Real-time Computing and Robotics
(RCAR), 2021, pp. 776-781.

Stern, R., Sturtevant, N., Felner, A., Koenig, S., Ma, H., Walker, T., ...
Bartak, R. (2019). Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. doi:10.48550/ARXIV.1906.08291

mapf.info : webmaster: Sven Koenig — Main / Welcome! — browse.
Retrieved 11 September 2022, from http://mapf.info/

Boyarski, E., Felner, A., Stern, R., Sharon, G., Betzalel, O., Tolpin,
D., Shimony, S.E. (2015). ICBS: The Improved Conflict-Based Search
Algorithm for Multi-Agent Pathfinding. SOCS.

Silver, D. (2005). Cooperative Pathfinding. AIIDE.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval PathPlanning
for Dynamic Environments. InNICRA, 5628-5635.

Varambally, S., Li, J., Koenig, S. (2022). Which MAPF Model Works
Best for Automated Warehousing? Proceedings of the Symposium on
Combinatorial Search (SoCS), 190-198.

[10] Andreychuk, A.; Yakovlev, K.; Boyarski, E.; and Stern, R. 2021.Improv-

ing Continuous-Time Conflict Based Search.InAAAIL11220-11227.

[11] Enginbaglayici (no date) Enginbaglayici/ConflictBasedSearch: Conflict-

[1] A. Bolu and O. Korgak, “Path Planning for Multiple Mobile Robots
in Smart Warehouse,” 2019 7th International Conference on Control,
Mechatronics and Automation (ICCMA), 2019, pp. 144-150.

based search for multi-agent path finding (MAPF), GitHub. Available
at: https://github.com/enginbaglayici/ConflictBasedSearch (Accessed: De-
cember 4, 2022).

	Introduction
	Related work
	Methodology
	Space Time A*
	Prioritised Planning
	Conflict based Planning

	Approach
	Results
	Challenges
	Discussion
	Total Cost
	Flow-time
	Makespan

	Conclusion
	Appendix A: Individual contributions
	Abhay Karade
	Vaibhav Kadam
	 Akash Thorat

	References

